
FORTRAN Subroutines and Functions
Engineering Applications

Dr. Ugur Guven

Aerospace & Nuclear Engineer

Functions in FORTRAN

• In engineering applications, one of the most
important things is to calculate a function in
order to solve an engineering problems.

• Some functions may be used more then once
in engineering calculations.

• Hence constantly using IF-THEN or GOTO or
Loops would be counterproductive and as a
result the FUNCTION Command will be useful.

Function Statement

• A function begins with a FUNCTION statement
and ends with the next END statement. A
function can contain any statements except
BLOCK DATA, ENTRY, FUNCTION, PROGRAM, or
SUBROUTINE.

• The Function statement can contain a set of
operations or a single function depending
upon your need.

Function Example

function func(i) result(j)
integer i ! input
integer j ! output

j = i**2 + i**3
end function func

Function Example
• Define the function in the beginning of the

program

• Define the input variable in the function in the
beginning of the program as well as in the
beginning of the function itself

• Define the output variable in the beginning of
the function routine as integer, real etc.

• Use the word result in your function
statement to overcome confusion

Fortran Program with Function
Statement

program xfunc
integer i
integer func

print*, "Input the number"
read*, i

print*,"sum of the square and cube of",i," is",func(i)

end program xfunc

function func(i) result(j)

integer i ! input
integer j !output

j = i**2 + i**3
end function func

Function Statement Remarks
• Function Statement is fine when you only

have a single function that will be used
repeatedly in a setting

• There should be a single result of a function

• You can call a function as many times as you
wish, but you should be very careful with
handling of the input and the output variables

• Redundantly define your variables in function
each time, but make sure that they are the
same in the main program as well.

Subroutines in FORTRAN

• You will want to use a function if you need to do a
complicated calculation that has only one result
which you may or may not want to subsequently
use in an expression. However, that is the biggest
advantage of a function as you can use it directly in
a FORTRAN expression

• Subroutines are used to perform several tasks at
once as many times as you want in the program.

• However, calls to subroutines cannot be placed in
an expression.

Subroutine Syntax in FORTRAN

SUBROUTINE subroutine-name (arg1, arg2, ..., argn

IMPLICIT NONE

[specification part]

[execution part]

[subprogram part]

END SUBROUTINE subroutine-name

Call Statement in FORTRAN

• In the main program, a subroutine is activated
by using a CALL statement which include the
subroutine name followed by the list of inputs
to and outputs from the subroutine
surrounded by parenthesis.

• The inputs and outputs are collectively called
the arguments.

• Subroutine names should be different than
those used for variables or functions

Subroutine Format

• They begin with a line that includes the word
SUBROUTINE, the name of the subroutine,
and the arguments for the subroutine.

• The subroutine name is not declared
anywhere in the program.

• All variables used by the subroutine, including
the arguments, must be declared in the
subroutine

• A subroutine is finished off with a RETURN
and an END statement.

Program Example with Subroutines

Subroutine Semantics
• The meaning of a subroutine is very simple: A subroutine is a

self-contained unit that receives some "input" from the
outside world via its formal arguments, does some
computations, and then returns the results, if any, with its
formal arguments.

• Unlike functions, the name of a subroutine is not a special
name to which you can save a result. Subroutine's name is
simply a name for identification purpose and you cannot use
it in any statement except the CALL statement.

• A subroutine receives its input values from its formal
arguments, does computations, and saves the results in some
of its formal arguments. When the control of execution
reaches END SUBROUTINE, the values stored in some formal
arguments are passed back to their corresponding actual
arguments.

• Any statements that can be used in a PROGRAM can also be
used in a SUBROUTINE.

THANK YOU

www.itlectures.co.cc

drguven@live.com

http://www.itlectures.co.cc/
mailto:drguven@live.com

