
Fortran Programming

Dr. Ugur GUVEN

What is FORTRAN?
• Fortran stands for FORMULA Translation as it

is a programming language that is used for
scientific and engineering calculations

• Although original FORTRAN was very weak in
its visual aspects, the new FORTRAN 2008 is
completely a visual FORTRAN.

• Your programming codes are translated and
compiled into machine language. Machine
language is made up of 0 and 1 and that is the
only terminology that a computer
understands.

Binary and HexaDecimal Codes

Sample Numerical Fortran Program
! Vertical motion under gravity
IMPLICIT NONE
REAL, PARAMETER :: G = 9.8 ! acceleration due to
gravity
REAL S ! displacement (metres)
REAL T ! time
REAL U ! initial speed (metres/sec)
PRINT*, ' Time Displacement'
PRINT*
U = 60
T = 6
S = U * T - G / 2 * T ** 2
PRINT*, T, S
END PROGRAM Vertical

Definition of Variables in Fortran
• It is important for you to define the constants and

variables in the program.

• If the value must remain the same throughout the
program, that data should be defined as constant.

• Variables can be defined as Integer, Real or Character.

• Due to Implicit rule, variables I to N are reserved for
integers, so you should use IMPLICIT NONE statement
if you don't want to use these variables as Integers.

INTEGER X
REAL INTEREST, A, B
CHARACTER LETTER
REAL :: A = 1

Declared Constants
• In FORTRAN, you can declare a constant that

can stay the same throughout the program.
Any attempt to change it would generate an
error message

Mathematical Operations in
FORTRAN

• Mathematical Operations are carried out
according to their algebraic priorities. This
means that first inside the parentheses are
evaluated and then the multiplication and
divisions are carried out. Last the additions
and subtractions are carried out.

Order of Operations in FORTRAN

• Hence, the following order is followed:

1) Parentheses

2) Exponential Calculations

2) Multiplication & Division (Carried out from
left to right)

3) Normal Addition and Subtraction

Sample Operations in FORTRAN

• Hence, the following samples hold true:

a) (2+3)*4 = 20

b) 2*5*6/20 = 3

c) 4*5**2-10 = 90

d) 2+5*6/10 =5

e) (5*2)**2/4 = 25

Integer Division in FORTRAN

• Make sure that in divisions, you don’t mix
Integers and Real numbers as Integer division
will yield different results as compared to Real
Division.

Input in FORTRAN
• You can input data by directly defining them in

FORTRAN or you can use the READ statement
so that the user can input his or her data.

Read Statement in FORTRAN

Read Statement in FORTRAN

• So, as you can see, Read statement reads the
input line by line for each Read statement.

• If there are two variables in a Read statement
and 3 values on a line, the read statement will
only read those first two values.

Reading from a File

• Suppose you have more then one value that
you need to input. Inputting 10 or more data
every time that you run the program can be
very annoying.

• One way to overcome this is by creating an
ASCII Text file and then inputting these values
from the data file. Thus, every time that you
run the program the data from the file will be
inputted. (Such as the vertices of an airfoil or
temperature gradients in a rocket nozzle)

Reading from a File
• Lets say that you have created a text file called

Data.txt with the following values

• 3 4 5 (The values have no comma to separate
them)

• You have to use the Open statement to input
these values to the program

OPEN(1, FILE = 'DATA')

READ(1, *) A, B, C

• So, as you can see the first number 1 denotes
the number of the file and the ‘DATA’ in the
first line denotes the name of the file.

Output in FORTRAN
• The best way to output in FORTRAN is by using

the PRINT statement. It allows you to output
to the screen your private statements, the
solution of a numeric expression or any
variable.

Output in FORTRAN

• Thus any statement that you want to be
printed exactly must be in quotes or
apostrophes

• Any variable for which you want the value can
be written directly.

• You can write a constant directly

The square root of 2 is 1.41

Output in FORTRAN
• A = 2, B= 3, D= 4, Name = Richard

• PRINT*, A, B, C

2 3 4

• PRINT*, “My name is ”, Name

My name is Richard

• PRINT*, 2

2

• PRINT*, A, “is less than “, 5

2 is less than 5

Outputting to a Printer

• If you want to output the result to a printer
then you use the WRITE statement instead of
the PRINT statement.

• WRITE*, “This statement is written on a
printer”

Putting Comments in FORTRAN

• It is always best for you to write some
comments on a program line, so that you will
be able to remember important points when
you have to go back to your program

• The comments are put after an exclamation
mark (!) and the program doesn’t read the line
behind the !

• ! This is a remark line and it is not read by the
compiler

Sample Program

Find the Errors in the Syntax

Summary
• Fort ran statements may be up to 132 characters long and

may s tar t anywhere on the line .

• All statements , except assignments , s tar t with a keyword.

• A Fort ran token is a sequence of characters forming a label
, keyword, name, constant , operator

• or separator.

• Blanks should be used to improve readability, except inside
keywords and names.

• Comments may be type after the exclamation! They should be
used liberally to descr ibe variables and to explain how a
program works .

• A statement with & as i t s last non-blank character will be
continued onto the next line .

• There are five intrinsic data types: integer, real , complex,
logical and character .

Summary
• Numeric express ions may be formed from constants

and variables with the five numeric
• Intrinsic opera t ors , which operate according to

strict rules of precedence .
• Decimal parts are truncated when integers are

divided, or when integers are assigned to reals .
• Numeric assignment computes the value of a

numeric express ion and assigns it to a real or
• integer variable .
• Groups of variables may be given initial values in a

DATA statement .
• PRINT* is used to pr in t (display) output .
• READ* is used to input data from the keyboard

while a program is running.
• Data may also be read from an external f i le (e .g

. a disk f i le) .

Exercises

Exercises
• State , giving reasons , which of the

following are not For t ran variable names:

•

• (a) A2 (b) A.2 (c) 2A (d) 'A'ONE

•

• (e) AONE (f) X_1

• (g) MiXedUp (h) Pay Day

• (i) U.S.S.R. (j) Pay_Day

• (k) min*2 (l) PRINT

Exercises

• Translate the following expressions into
FORTRAN

Exercises

Exercises

• Please write a program to calculate the following
statement. Ask the user for inputting X and the
number of terms that there should be in your
function.

Solution Method for Exercises
• Write Source Code in your Fortran Environment

- Define variables and constants

- Input the necessary info from users with
Read statement

- Process the data using appropriate formulas

- Output the Results

- Use Remarks after Exclamation Point

• Use Compiler to Test for Syntax Errors

• Use Builder to Test for Logic Errors

• Execute the Program

Loops in Programming
• When you need something repeated in a

program, then you will need to create loops to
repeat certain lines of codes.

• These loops can be conditional loops or they
can be unconditional loops.

• In a conditional loop, a repetition will take
place only if a condition is satisfied.

• In an unconditional loop, the repetition will
take place regardless of conditions

Do Loop
• Do Loop is one of the most powerful loops in

FORTRAN or in any other programming language.

• The typical Do statement looks something like this:

Do Loop Example

Do Loop Example

• With the DO Loop, You can Go Forward or
Backwards. The statements will be executed until
the expressions in the Do Loop is satisfied and
exhausted.

• DO I = 10 , 7, -1
PRINT*, I + 1
END DO

• The above code segment will output:
11
10
9
8

Do Loop Example
• The last number in the DO statement denotes

how many steps are incremented. For example:

• Do M = 4, 12, 2

print*, M

end do

• The output will be:

4

6

8

10

12

Conditional DO Loop (DO WHILE)
• If you only want something executed repeatedly as

long as a condition holds true, then you must use
the Do While Construct

Program Example: Square Rooting
with Newton

Conditional Statements: IF-THEN-ELSE
• Conditional statements allow for you to branch the

programming depending upon the condition set
forth in the conditional statement

• IF (Condition Satisfied) THEN (Do This) ELSE (Do
This)

IF - THEN - ELSE

IF THEN Statement Examples
• IF (X < A) Then

A=A+1

Else A=A-1

• IF (X <= A) THEN
A=A*B

Else A=A/B

• IF (X >= A) THEN

X=4

Else X=3

IF Constructs in General

GOTO Statement

• If you want your program to branch off in another
direction without executing some of these
statements, then the best way to proceed would be
to use the GOTO statement

INTRINSIC FUNCTIONS
• FORTRAN has several functions that you can use for

calculating ready made functions.

INTRINSIC FUNCTIONS

Exercises

Exercises

Exercises

Exercises

PROJECT
• Write a program that calculates the electricity bill of

a small town residents based on the following
conditions

Arrays

• Arrays are perhaps the most important statements
in Fortran.

• Most variables in real life can have more then one
component. For example in Fluid Dynamics, a
velocity of a particle may have an X, Y and even a Z
component.

• Hence, you use arrays to define more then one
value to each variable.

• Some example would be V(x,y,z) or T(alpha,beta)
etc.

One Dimensional Array

• If a statement has only one dimension, then it
is called a one dimensional array

Array Boundaries

Two Dimensional Array
• If an array has two dimensions, then you can think

of it as a matrix. Its two dimensions can be separate
from each other. (One dimension may be different
in size then other)

Multi-Dimensional Arrays
• In FORTRAN, you can have up to 7 dimensions in an

array.

• Let’s say that you want to describe the flow
property of a particle in 3 dimensions for a grid that
has 4 points in the X and Y axis and with 3 points in
the Z axis. Then, you would have to state :

REAL DIMENSION (4,4,3) :: V

• Then, you would write V(i,j,k) or V(1,1,2) or V(i,j,1)
or V(i,2,3) etc. to determine the property at a
certain grid point.

