Introduction to MATLAB for
 Engineering Students

Dr. Ugur Guven
Aerospace \& Nuclear Engineer

MATLAB as an Engineering Tool

- One of the important things for an engineer is to be able to calculate various problems or for solving various projects
- Especially in the world of $21^{\text {st }}$ century, the complexity of the problems call for large calculations which require either programming knowledge or the help of calculation software such as MATLAB.

MATLAB Desktop

- This is what a basic MATLAB Desktop looks like

MATLAB as a Calculator

- The most basic function of MATLAB is as a scientific calculator. Here is the basic command window for calculation operations.

MATLAB Fundamentals

- >> is the command prompt. Matlab will try to calculate anything after this prompt.
- In Matlab, you usually don't need to declare variables as Matlab will assign types automatically
- Dimensioning is automatic in MATLAB as arrays and vectors are given dimensions automatically
- MATLAB is case sensitive. Hence, a and A are different variables
- Output of every MATLAB command is displayed directly on the screen. If a semicolon is present, the output is suppressed.

General MATLAB Commands

- help = lists help topics
- helpwin = opens interactive help window
- help topic = lists help on the particular topic
- who = lists variables currently in the workspace
- clear = clears workspace, removes variables
- clear $\mathbf{x y z}=$ clears only variables x, y, z
- clc = clears command window
- clf = clears figure window

MATLAB Operations Order

- First brackets
- Exponents
- Multiplication and Division Left to Right
- Addition and Subtraction Left to Right

MATLAB Formatting

Command	Example of Output
\gg format short	$31.4162(4$-decimal places)
>>format short e	$3.1416 e+01$
>>format long e	$3.141592653589793 e+01$
>>format short	$31.4162(4$-decimal places)
\gg format bank	$31.42(2$-decimal places $)$

format compact
is also useful in that it suppresses blank lines in the output thus allowing more information to be displayed.

The " e " notation is used for very large or very small numbers:
$-1.3412 \mathrm{e}+03=-1.3412 \times 10^{3}=-1341.2$
$-1.3412 e-01=-1.3412 \times 10^{-1}=-0.13412$

Ans Variable in MATLAB

- Whenever you calculate something in MATLAB, the value is stored in Ans. You can always use this value for further calculations.

$$
\begin{gathered}
\gg 3-2-4 \\
\text { ans }= \\
-13 \\
\gg \operatorname{ans}=5 \\
\text { ans }= \\
-65
\end{gathered}
$$

Variables in MATLAB

- In mathematics, it is very important to store values in variables which can be used repeatedly with changing dynamic values. In MATLAB, you can equate something directly to a variable.

$$
\begin{aligned}
& \gg=x=3-2-4 \\
& x=-13 \\
& \gg y=x+5 \\
& y=y
\end{aligned}
$$

Legal names consist of any combination of letters and digits, starting with a letter. These are allowable:

$$
\text { NetCost, Left2Pay, } x 3, \mathrm{X} 3, \mathrm{z} 25 \mathrm{c} 5
$$

These are not allowable:

$$
\text { Net-Cost, 2pay, } \% \mathrm{x} \text {, Osign }
$$

Simple MATLAB Calculations

- $\gg 2+2$
ans $=4$
$\gg x=2+2$
$x=4$
$>y=x+2$

$$
y=6
$$

$\gg z=y+x$

$$
z=10
$$

Functions in MATLAB

- There are many built in functions in MATLAB which help you to calculate real life functions
\sin , \cos , \tan
and their arguments should be in radians.
The inverse trig functions are called asin, acos, atan (as opposed to the usual arcsin or $\sin ^{-1}$ etc.). The result is in radians.

These include sqrt, exp, $\log , \log 10$

Function Examples in MATLAB

```
>>x=9;
>>qrt (x), \operatorname{exp}(x),\operatorname{log}(sqrt(x)),\operatorname{log}10(x-2+6)
ans=
    3
ans=
    8.1031e+03
ans=
    1.0986
ans=
    1.9395
```

$\exp (x)$ denotes the exponential function $\exp (x)=e^{x}$
and the inverse function is log:
e.g. to work out the coordinates of a point on a circle of radius 5 centred at the origin and having an elevation $30^{\circ}=\pi / 6$ radians:

```
\(\gg x=5 * \cos (p i / 6), y=5 * \sin (p i / 6)\)
\(x=\)
    4.3301
\(\mathrm{y}=\)
        2.5000
```


MATLAB Examples

$$
\begin{aligned}
& \frac{2^{5}}{2^{5}-1}=2^{\wedge} 5 /\left(2^{\wedge} 5-1\right)=1.0323 \\
& e^{3}=\exp (3)=20.0855 \\
& \ln \left(e^{3}\right)=\log (\exp (3))=3 \\
& \log _{10}\left(e^{3}\right)=\log 10(\exp (3))=1.3029 \\
& \sin \frac{\pi}{6}=\sin (p i / 6)=0.5 \\
& \sin ^{2} \frac{\pi}{6}+\cos ^{2} \frac{\pi}{6}=(\sin (p i / 6))^{\wedge} 2+(\cos (p i / 6))^{\wedge} 2 \\
& \frac{1+3 i}{1-3 i}=(1+3 i) /(1-3 i)=-0.8+0.6 i
\end{aligned}
$$

Vectoral Operations in MATLAB

$$
\begin{aligned}
& \text { - } \gg x=\left[\begin{array}{lll}
1 & 2 & 3
\end{array}\right] \\
& x=123 \\
& \gg y=[2 ; 1 ; 5] \\
& y=2 \\
& 1 \\
& 5 \\
& \gg z=\left[\begin{array}{lll}
2 & 1 & 0
\end{array}\right] \\
& \text { >> } \mathrm{a}=\mathrm{x}+\mathrm{z} \\
& \text { a = } 333 \\
& \gg b=2 * a \\
& \text { b=666 } \\
& \text { >>t }=1: 10 \\
& t=12345678910
\end{aligned}
$$

Example: Equation of a Straight Line

- The equation of a straight line is $\mathbf{y}=\mathbf{m x}+\mathbf{c}$ where \mathbf{m} and c are constants. Compute the y coordinates of a line with slope $m=0.5$ and intercept $c=-2$ at the following x coordinates where $x=0,1.5,3,4,5,7,9$ and 10
- $x=[01.534579$ 10];
$y=0.5^{*} x-2$
Ans. $y=-2 \quad-1.25 \quad-0.5 \quad 0 \quad 0.5 \quad 1.5 \quad 2.5 \quad 3$

Creating a Plot Graph of a Line

- Lets plot the graph of the line equation given in the previous example $y=$ $0.5 x-2$
- $\gg x=[01.534579$ 10];
$\gg y=0.5^{*} x-2$
- >> plot (x, y)
(The Matlab will plot the line at this point. However, the axis will be mismatched. We need to set them equal to each other
>> axis ('equal') ! Sets the axis lengths equal
>> xlabel (' x ') ! Labels the x axis
>> ylabel (' y ') ! Labels the y axis
>> title('Graph of a Line')

Creating a Plot of a Circle

- Lets draw a unit circle using 100 points from the equations $x=\cos \theta, y=\sin \theta$, where θ is between 0 and 2 pi
- >> theta = linspace(0,2*pi,100)
$\gg x=\cos ($ theta)
$\gg y=\sin ($ theta)
>> plot (x, y)
>> axis('equal')
>> xlabel('x)
>> ylabel ('y)
>> title('Circle of unit radius')

Creating a Trigonometric Plot

- Plot $y=\sin x$ with x changing between 0 and 2pi taking 100 linearly spaced points
- $x=$ linspace $\left(0,2^{*}\right.$ pi,100) plot $(x, \sin (x))$ xlabel (' x ')
ylabel('sin $\left.(x)^{\prime}\right)$

