
Introduction to Parallel 
Computing

Fundamentals and Terminology

Dr. Ugur GUVEN



Abstract – What is the Scope of 
Parallel Computing

• This presentation covers the basics of parallel computing. Beginning with a 
brief overview and some concepts and terminology associated with 
parallel computing, the topics of parallel memory architectures and 
programming models are then explored. These topics are followed by a 
discussion on a number of issues related to designing parallel programs. 
The last portion of the presentation is spent examining how to parallelize 
several different types of serial programs. 

• Level/Prerequisites: None 



What is Parallel Computing? (1)

• Traditionally, software has been written for 
serial computation: 

– To be run on a single computer having a single 
Central Processing Unit (CPU); 

– A problem is broken into a discrete series of 
instructions. 

– Instructions are executed one after another. 

– Only one instruction may execute at any moment 
in time. 



What is Parallel Computing? (2)

• In the simplest sense, parallel computing is the simultaneous use of multiple 
compute resources to solve a computational problem. 
– To be run using multiple CPUs 

– A problem is broken into discrete parts that can be solved concurrently 

– Each part is further broken down to a series of instructions 

• Instructions from each part execute simultaneously on different CPUs 



Parallel Computing: Resources

• The compute resources can include: 

– A single computer with multiple processors; 

– A single computer with (multiple) processor(s) and 
some specialized computer resources (GPU, FPGA 
…)

– An arbitrary number of computers connected by a 
network; 

– A combination of both. 



Parallel Computing: The 
Computational Problem 

• The computational problem usually 
demonstrates characteristics such as the 
ability to be: 

– Broken apart into discrete pieces of work that can 
be solved simultaneously; 

– Execute multiple program instructions at any 
moment in time; 

– Solved in less time with multiple compute 
resources than with a single compute resource. 



Parallel Computing: What For? (1)

• Parallel computing is an evolution of serial computing that attempts to 
emulate what has always been the state of affairs in the natural world: 
many complex, interrelated events happening at the same time, yet within 
a sequence.

• Some examples: 

– Planetary and galactic orbits 

– Weather and ocean patterns 

– Tectonic plate drift 

– Rush hour traffic in Paris 

– Automobile assembly line 

– Daily operations within a business 

– Building a shopping mall 

– Ordering a hamburger at the drive through. 



Parallel Computing: what for? (2)

• Traditionally, parallel computing has been considered 
to be "the high end of computing" and has been 
motivated by numerical simulations of complex 
systems and "Grand Challenge Problems" such as: 
– weather and climate 
– chemical and nuclear reactions 
– biological, human genome 
– geological, seismic activity 
– mechanical devices - from prosthetics to spacecraft 
– electronic circuits 
– manufacturing processes 
- CFD Problems



Parallel Computing: what for? (3)

• Today, commercial applications are providing an equal or greater driving 
force in the development of faster computers. These applications require 
the processing of large amounts of data in sophisticated ways. Example 
applications include: 
– parallel databases, data mining 
– oil exploration 
– web search engines, web based business services 
– computer-aided diagnosis in medicine 
– management of national and multi-national corporations 
– advanced graphics and virtual reality, particularly in the entertainment 

industry 
– networked video and multi-media technologies 
– collaborative work environments 

• Ultimately, parallel computing is an attempt to maximize the infinite but 
seemingly scarce commodity called time. 



Why Parallel Computing? (1)

• This is a legitime question! Parallel computing 
is complex on any aspect!

• The primary reasons for using parallel 
computing: 
– Save time - wall clock time 

– Solve larger problems 

– Provide concurrency (do multiple things at the 
same time) 



Why Parallel Computing? (2)

• Other reasons might include: 
– Taking advantage of non-local resources - using 

available compute resources on a wide area network, 
or even the Internet when local compute resources 
are scarce. 

– Cost savings - using multiple "cheap" computing 
resources instead of paying for time on a 
supercomputer. 

– Overcoming memory constraints - single computers 
have very finite memory resources. For large 
problems, using the memories of multiple computers 
may overcome this obstacle. 



Limitations of Serial Computing

• Limits to serial computing - both physical and practical reasons pose significant 
constraints to simply building ever faster serial computers.

• Transmission speeds - the speed of a serial computer is directly dependent upon 
how fast data can move through hardware. Absolute limits are the speed of light 
(30 cm/nanosecond) and the transmission limit of copper wire (9 
cm/nanosecond). Increasing speeds necessitate increasing proximity of processing 
elements. 

• Limits to miniaturization - processor technology is allowing an increasing number 
of transistors to be placed on a chip. However, even with molecular or atomic-level 
components, a limit will be reached on how small components can be. 

• Economic limitations - it is increasingly expensive to make a single processor faster. 
Using a larger number of moderately fast commodity processors to achieve the 
same (or better) performance is less expensive. 



The Future

• During the past 10 years, the trends indicated 
by ever faster networks, distributed systems, 
and multi-processor computer architectures 
(even at the desktop level) clearly show that 
parallelism is the future of computing.

• It will be multi-forms, mixing general purpose 
solutions (your PC…) and very speciliazed 
solutions as IBM Cells, ClearSpeed, GPGPU 
from NVidia …



Who and What? (1)

• Top500.org provides statistics on parallel 
computing users - the charts below are just a 
sample. Some things to note: 

– Sectors may overlap - for example, research may 
be classified research. Respondents have to 
choose between the two. 

• "Not Specified" is by far the largest application 
- probably means multiple applications.

http://top500.org/


Who and What? (2)



Concepts and Terminology



Von Neumann Architecture

• For over 40 years, virtually all computers have 
followed a common machine model known as 
the von Neumann computer. Named after the 
Hungarian mathematician John von Neumann.

• A von Neumann computer uses the stored-
program concept. The CPU executes a stored 
program that specifies a sequence of read and 
write operations on the memory. 



Basic Design

• Basic design
– Memory is used to store both 

program and data instructions 
– Program instructions are coded 

data which tell the computer to 
do something 

– Data is simply information to 
be used by the program 

• A central processing unit 
(CPU) gets instructions and/or 
data from memory, decodes 
the instructions and then 
sequentially performs them.



Flynn's Classical Taxonomy

• There are different ways to classify parallel 
computers. One of the more widely used 
classifications, in use since 1966, is called Flynn's 
Taxonomy. 

• Flynn's taxonomy distinguishes multi-processor 
computer architectures according to how they 
can be classified along the two independent 
dimensions of Instruction and Data. Each of 
these dimensions can have only one of two 
possible states: Single or Multiple. 



Flynn Matrix

• The matrix below defines the 4 possible 
classifications according to Flynn



Single Instruction, Single Data (SISD)

• A serial (non-parallel) computer 
• Single instruction: only one instruction 

stream is being acted on by the CPU 
during any one clock cycle 

• Single data: only one data stream is 
being used as input during any one clock 
cycle 

• Deterministic execution 
• This is the oldest and until recently, the 

most prevalent form of computer 
• Examples: most PCs, single CPU 

workstations and mainframes 



Single Instruction, Multiple Data 
(SIMD)• A type of parallel computer 

• Single instruction: All processing units execute the same instruction at any given clock 
cycle 

• Multiple data: Each processing unit can operate on a different data element 

• This type of machine typically has an instruction dispatcher, a very high-bandwidth 
internal network, and a very large array of very small-capacity instruction units. 

• Best suited for specialized problems characterized by a high degree of regularity,such as 
image processing. 

• Synchronous (lockstep) and deterministic execution 

• Two varieties: Processor Arrays and Vector Pipelines 

• Examples: 
– Processor Arrays: Connection Machine CM-2, Maspar MP-1, MP-2 

– Vector Pipelines: IBM 9000, Cray C90, Fujitsu VP, NEC SX-2, Hitachi S820



Multiple Instruction, Single Data 
(MISD)• A single data stream is fed into multiple processing units. 

• Each processing unit operates on the data independently via 
independent instruction streams. 

• Few actual examples of this class of parallel computer have ever 
existed. One is the experimental Carnegie-Mellon C.mmp computer 
(1971). 

• Some conceivable uses might be: 

– multiple frequency filters operating on a single signal stream 

• multiple cryptography algorithms attempting to crack a single coded 
message.



Multiple Instruction, Multiple Data 
(MIMD)• Currently, the most common type of parallel computer. Most modern 

computers fall into this category. 

• Multiple Instruction: every processor may be executing a different 
instruction stream 

• Multiple Data: every processor may be working with a different data 
stream 

• Execution can be synchronous or asynchronous, deterministic or non-
deterministic 

• Examples: most current supercomputers, networked parallel 
computer "grids" and multi-processor SMP computers - including 
some types of PCs.



Some General Parallel Terminology

• Task 
– A logically discrete section of computational work. A 

task is typically a program or program-like set of 
instructions that is executed by a processor. 

• Parallel Task 
– A task that can be executed by multiple processors 

safely (yields correct results) 

• Serial Execution 
– Execution of a program sequentially, one statement at 

a time. In the simplest sense, this is what happens on a 
one processor machine. However, virtually all parallel 
tasks will have sections of a parallel program that must 
be executed serially. 

Like everything else, parallel computing has its own "jargon". Some of the more 
commonly used terms associated with parallel computing are listed below. Most of 
these will be discussed in more detail later.



Some General Parallel Terminology

• Parallel Execution 
– Execution of a program by more than one task, with each task being able to 

execute the same or different statement at the same moment in time. 

• Shared Memory 
– From a strictly hardware point of view, describes a computer architecture 

where all processors have direct (usually bus based) access to common 
physical memory. In a programming sense, it describes a model where parallel 
tasks all have the same "picture" of memory and can directly address and 
access the same logical memory locations regardless of where the physical 
memory actually exists. 

• Distributed Memory 
– In hardware, refers to network based memory access for physical memory that 

is not common. As a programming model, tasks can only logically "see" local 
machine memory and must use communications to access memory on other 
machines where other tasks are executing. 



Some General Parallel Terminology

• Communications 
– Parallel tasks typically need to exchange data. There are several ways this can 

be accomplished, such as through a shared memory bus or over a network, 
however the actual event of data exchange is commonly referred to as 
communications regardless of the method employed. 

• Synchronization 
– The coordination of parallel tasks in real time, very often associated with 

communications. Often implemented by establishing a synchronization point 
within an application where a task may not proceed further until another 
task(s) reaches the same or logically equivalent point. 

– Synchronization usually involves waiting by at least one task, and can 
therefore cause a parallel application's wall clock execution time to increase.



Some General Parallel Terminology

• Granularity 
– In parallel computing, granularity is a qualitative measure of the ratio of 

computation to communication. 

– Coarse: relatively large amounts of computational work are done between 
communication events 

– Fine: relatively small amounts of computational work are done between 
communication events 

• Observed Speedup 
– Observed speedup of a code which has been parallelized, defined as: 

wall-clock time of serial execution

wall-clock time of parallel execution

– One of the simplest and most widely used indicators for a parallel program's 
performance. 



Some General Parallel Terminology

• Parallel Overhead 

– The amount of time required to coordinate parallel tasks, as opposed to doing 
useful work. Parallel overhead can include factors such as: 

• Task start-up time 

• Synchronizations 

• Data communications 

• Software overhead imposed by parallel compilers, libraries, tools, operating system, 
etc. 

• Task termination time 

• Massively Parallel 

– Refers to the hardware that comprises a given parallel system - having many 
processors. The meaning of many keeps increasing, but currently BG/L pushes 
this number to 6 digits. 



Some General Parallel Terminology

• Scalability 

– Refers to a parallel system's (hardware and/or 
software) ability to demonstrate a proportionate 
increase in parallel speedup with the addition of 
more processors. Factors that contribute to 
scalability include: 
• Hardware - particularly memory-cpu bandwidths and network 

communications 

• Application algorithm 

• Parallel overhead related 

• Characteristics of your specific application and coding 



Parallel Computer Memory 
Architectures



Memory Architectures

• Shared Memory

• Distributed Memory

• Hybrid Distributed-Shared Memory



Shared Memory
• Shared memory parallel computers vary widely, but generally have in 

common the ability for all processors to access all memory as global 
address space. 

• Multiple processors can operate independently but share the same 
memory resources. 

• Changes in a memory location effected by one processor are visible to 
all other processors. 

• Shared memory machines can be divided into two main classes based 
upon memory access times: UMA and NUMA. 



Shared Memory : UMA vs. NUMA

• Uniform Memory Access (UMA): 
– Most commonly represented today by Symmetric Multiprocessor (SMP) 

machines 
– Identical processors 
– Equal access and access times to memory 
– Sometimes called CC-UMA - Cache Coherent UMA. Cache coherent means if 

one processor updates a location in shared memory, all the other processors 
know about the update. Cache coherency is accomplished at the hardware 
level. 

• Non-Uniform Memory Access (NUMA): 
– Often made by physically linking two or more SMPs 
– One SMP can directly access memory of another SMP 
– Not all processors have equal access time to all memories 
– Memory access across link is slower 
– If cache coherency is maintained, then may also be called CC-NUMA - Cache 

Coherent NUMA 



Shared Memory: Pro and Con

• Advantages
– Global address space provides a user-friendly programming perspective to 

memory 
– Data sharing between tasks is both fast and uniform due to the proximity of 

memory to CPUs 

• Disadvantages: 
– Primary disadvantage is the lack of scalability between memory and CPUs. 

Adding more CPUs can geometrically increases traffic on the shared memory-
CPU path, and for cache coherent systems, geometrically increase traffic 
associated with cache/memory management. 

– Programmer responsibility for synchronization constructs that insure "correct" 
access of global memory. 

– Expense: it becomes increasingly difficult and expensive to design and 
produce shared memory machines with ever increasing numbers of 
processors. 



Distributed Memory
• Like shared memory systems, distributed memory systems vary widely but share a 

common characteristic. Distributed memory systems require a communication network 
to connect inter-processor memory. 

• Processors have their own local memory. Memory addresses in one processor do not 
map to another processor, so there is no concept of global address space across all 
processors. 

• Because each processor has its own local memory, it operates independently. Changes 
it makes to its local memory have no effect on the memory of other processors. Hence, 
the concept of cache coherency does not apply. 

• When a processor needs access to data in another processor, it is usually the task of the 
programmer to explicitly define how and when data is communicated. Synchronization 
between tasks is likewise the programmer's responsibility. 

• The network "fabric" used for data transfer varies widely, though it can can be as simple 
as Ethernet.



Distributed Memory: Pro and Con

• Advantages
– Memory is scalable with number of processors. Increase the number of 

processors and the size of memory increases proportionately. 

– Each processor can rapidly access its own memory without interference and 
without the overhead incurred with trying to maintain cache coherency. 

– Cost effectiveness: can use commodity, off-the-shelf processors and 
networking. 

• Disadvantages
– The programmer is responsible for many of the details associated with data 

communication between processors. 

– It may be difficult to map existing data structures, based on global memory, to 
this memory organization. 

– Non-uniform memory access (NUMA) times



Hybrid Distributed-Shared Memory

Comparison of Shared and Distributed Memory Architectures

Architecture CC-UMA CC-NUMA Distributed

Examples SMPs 

Sun Vexx 

DEC/Compaq 

SGI Challenge 

IBM POWER3

Bull NovaScale

SGI Origin 

Sequent 

HP Exemplar 

DEC/Compaq 

IBM POWER4 (MCM) 

Cray T3E 

Maspar 

IBM SP2

IBM BlueGene

Communications MPI 

Threads 

OpenMP 

shmem 

MPI 

Threads 

OpenMP 

shmem 

MPI 

Scalability to 10s of processors to 100s of processors to 1000s of processors 

Draw Backs Memory-CPU bandwidth Memory-CPU bandwidth

Non-uniform access times

System administration 

Programming is hard to 

develop and maintain

Software Availability many 1000s ISVs many 1000s ISVs 100s ISVs 

Summarizing a few of the key characteristics of shared and 
distributed memory machines



Hybrid Distributed-Shared Memory
• The largest and fastest computers in the world today employ both shared and 

distributed memory architectures.

• The shared memory component is usually a cache coherent SMP machine. 
Processors on a given SMP can address that machine's memory as global. 

• The distributed memory component is the networking of multiple SMPs. 
SMPs know only about their own memory - not the memory on another SMP. 
Therefore, network communications are required to move data from one SMP 
to another. 

• Current trends seem to indicate that this type of memory architecture will 
continue to prevail and increase at the high end of computing for the 
foreseeable future. 

• Advantages and Disadvantages: whatever is common to both shared and 
distributed memory architectures. 



Parallel Programming Models



Introduction to High Performance ComputingPage 41

Parallel Programming Models

 Overview

 Shared Memory Model

 Threads Model

 Message Passing Model

 Data Parallel Model

 Other Models



Introduction to High Performance ComputingPage 42

Overview

 There are several parallel programming models in 

common use: 

– Shared Memory 

– Threads 

– Message Passing 

– Data Parallel 

– Hybrid 

 Parallel programming models exist as an abstraction 

above hardware and memory architectures. 



Introduction to High Performance ComputingPage 43

Overview

 Although it might not seem apparent, these models are NOT specific to 
a particular type of machine or memory architecture. In fact, any of 
these models can (theoretically) be implemented on any underlying 
hardware.

 Shared memory model on a distributed memory machine: Kendall 
Square Research (KSR) ALLCACHE approach. 
– Machine memory was physically distributed, but appeared to the user as a 

single shared memory (global address space). Generically, this approach is 
referred to as "virtual shared memory".

– Note: although KSR is no longer in business, there is no reason to suggest 
that a similar implementation will not be made available by another vendor 
in the future. 

– Message passing model on a shared memory machine: MPI on SGI Origin. 

 The SGI Origin employed the CC-NUMA type of shared memory 
architecture, where every task has direct access to global memory. 
However, the ability to send and receive messages with MPI, as is 
commonly done over a network of distributed memory machines, is not 
only implemented but is very commonly used. 



Introduction to High Performance ComputingPage 44

Overview

 Which model to use is often a combination of what is 

available and personal choice. There is no "best" 

model, although there certainly are better 

implementations of some models over others. 

 The following sections describe each of the models 

mentioned above, and also discuss some of their 

actual implementations. 



Introduction to High Performance ComputingPage 45

Shared Memory Model

 In the shared-memory programming model, tasks share a 

common address space, which they read and write 

asynchronously. 

 Various mechanisms such as locks / semaphores may be used 

to control access to the shared memory. 

 An advantage of this model from the programmer's point of view 

is that the notion of data "ownership" is lacking, so there is no 

need to specify explicitly the communication of data between 

tasks. Program development can often be simplified. 

 An important disadvantage in terms of performance is that it 

becomes more difficult to understand and manage data locality.



Introduction to High Performance ComputingPage 46

Shared Memory Model: Implementations

 On shared memory platforms, the native compilers 

translate user program variables into actual memory 

addresses, which are global. 

 No common distributed memory platform 

implementations currently exist. However, as 

mentioned previously in the Overview section, the 

KSR ALLCACHE approach provided a shared 

memory view of data even though the physical 

memory of the machine was distributed. 



Introduction to High Performance ComputingPage 47

Threads Model

 In the threads model of parallel programming, a single process can have 
multiple, concurrent execution paths. 

 Perhaps the most simple analogy that can be used to describe threads is the 
concept of a single program that includes a number of subroutines: 
– The main program a.out is scheduled to run by the native operating system. a.out 

loads and acquires all of the necessary system and user resources to run. 

– a.out performs some serial work, and then creates a number of tasks (threads) that 
can be scheduled and run by the operating system concurrently. 

– Each thread has local data, but also, shares the entire resources of a.out. This 
saves the overhead associated with replicating a program's resources for each thread. 
Each thread also benefits from a global memory view because it shares the memory 
space of a.out. 

– A thread's work may best be described as a subroutine within the main program. Any 
thread can execute any subroutine at the same time as other threads. 

– Threads communicate with each other through global memory (updating address 
locations). This requires synchronization constructs to insure that more than one thread 
is not updating the same global address at any time. 

– Threads can come and go, but a.out remains present to provide the necessary shared 
resources until the application has completed. 

 Threads are commonly associated with shared memory architectures and 
operating systems. 



Introduction to High Performance ComputingPage 48

Threads Model Implementations

 From a programming perspective, threads implementations commonly comprise: 
– A library of subroutines that are called from within parallel source code 

– A set of compiler directives imbedded in either serial or parallel source code 

 In both cases, the programmer is responsible for determining all parallelism. 

 Threaded implementations are not new in computing. Historically, hardware 
vendors have implemented their own proprietary versions of threads. These 
implementations differed substantially from each other making it difficult for 
programmers to develop portable threaded applications. 

 Unrelated standardization efforts have resulted in two very different 
implementations of threads: POSIX Threads and OpenMP. 

 POSIX Threads
– Library based; requires parallel coding 

– Specified by the IEEE POSIX 1003.1c standard (1995). 

– C Language only 

– Commonly referred to as Pthreads. 

– Most hardware vendors now offer Pthreads in addition to their proprietary threads 
implementations. 

– Very explicit parallelism; requires significant programmer attention to detail. 



Introduction to High Performance ComputingPage 49

Threads Model: OpenMP

 OpenMP

– Compiler directive based; can use serial code 

– Jointly defined and endorsed by a group of major computer 

hardware and software vendors. The OpenMP Fortran API was 

released October 28, 1997. The C/C++ API was released in late 

1998. 

– Portable / multi-platform, including Unix and Windows NT platforms 

– Available in C/C++ and Fortran implementations 

– Can be very easy and simple to use - provides for "incremental 

parallelism" 

 Microsoft has its own implementation for threads, which is not 

related to the UNIX POSIX standard or OpenMP. 



Introduction to High Performance ComputingPage 50

Message Passing Model

 The message passing model demonstrates the 

following characteristics: 

– A set of tasks that use their own local memory during 

computation. Multiple tasks can reside on the same physical 

machine as well across an arbitrary number of machines. 

– Tasks exchange data through communications by sending 

and receiving messages. 

– Data transfer usually requires cooperative operations to be 

performed by each process. For example, a send operation 

must have a matching receive operation. 



Introduction to High Performance ComputingPage 51

Message Passing Model Implementations: MPI

 From a programming perspective, message passing 
implementations commonly comprise a library of subroutines 
that are imbedded in source code. The programmer is 
responsible for determining all parallelism. 

 Historically, a variety of message passing libraries have been 
available since the 1980s. These implementations differed 
substantially from each other making it difficult for programmers 
to develop portable applications. 

 In 1992, the MPI Forum was formed with the primary goal of 
establishing a standard interface for message passing 
implementations. 

 Part 1 of the Message Passing Interface (MPI) was released in 
1994. Part 2 (MPI-2) was released in 1996. Both MPI 
specifications are available on the web at 
www.mcs.anl.gov/Projects/mpi/standard.html. 

http://www.mcs.anl.gov/Projects/mpi/standard.html


Introduction to High Performance ComputingPage 52

Message Passing Model Implementations: MPI

 MPI is now the "de facto" industry standard for message passing, 

replacing virtually all other message passing implementations used for 

production work. Most, if not all of the popular parallel computing 

platforms offer at least one implementation of MPI. A few offer a full 

implementation of MPI-2. 

 For shared memory architectures, MPI implementations usually don't 

use a network for task communications. Instead, they use shared 

memory (memory copies) for performance reasons. 



Introduction to High Performance ComputingPage 53

Data Parallel Model

 The data parallel model demonstrates the following 

characteristics: 

– Most of the parallel work focuses on performing operations on a 

data set. The data set is typically organized into a common 

structure, such as an array or cube. 

– A set of tasks work collectively on the same data structure, 

however, each task works on a different partition of the same data 

structure. 

– Tasks perform the same operation on their partition of work, for 

example, "add 4 to every array element". 

 On shared memory architectures, all tasks may have access to 

the data structure through global memory. On distributed 

memory architectures the data structure is split up and resides 

as "chunks" in the local memory of each task. 



Introduction to High Performance ComputingPage 54

Data Parallel Model Implementations

 Programming with the data parallel model is usually 
accomplished by writing a program with data parallel constructs. 
The constructs can be calls to a data parallel subroutine library 
or, compiler directives recognized by a data parallel compiler. 

 Fortran 90 and 95 (F90, F95): ISO/ANSI standard extensions 
to Fortran 77. 
– Contains everything that is in Fortran 77 

– New source code format; additions to character set 

– Additions to program structure and commands 

– Variable additions - methods and arguments 

– Pointers and dynamic memory allocation added 

– Array processing (arrays treated as objects) added 

– Recursive and new intrinsic functions added 

– Many other new features 

 Implementations are available for most common parallel 
platforms. 



Introduction to High Performance ComputingPage 55

Data Parallel Model Implementations

 High Performance Fortran (HPF): Extensions to Fortran 90 to 
support data parallel programming. 
– Contains everything in Fortran 90 

– Directives to tell compiler how to distribute data added 

– Assertions that can improve optimization of generated code added 

– Data parallel constructs added (now part of Fortran 95) 

– Implementations are available for most common parallel platforms. 

 Compiler Directives: Allow the programmer to specify the 
distribution and alignment of data. Fortran implementations are 
available for most common parallel platforms. 

 Distributed memory implementations of this model usually have 
the compiler convert the program into standard code with calls 
to a message passing library (MPI usually) to distribute the data 
to all the processes. All message passing is done invisibly to the 
programmer. 



Introduction to High Performance ComputingPage 56

Other Models

 Other parallel programming models besides those previously 

mentioned certainly exist, and will continue to evolve along with 

the ever changing world of computer hardware and software.

 Only three of the more common ones are mentioned here.

– Hybrid

– Single Program Multiple Data

– Multiple Program Multiple Data



Introduction to High Performance ComputingPage 57

Hybryd

 In this model, any two or more parallel programming models are 

combined. 

 Currently, a common example of a hybrid model is the 

combination of the message passing model (MPI) with either the 

threads model (POSIX threads) or the shared memory model 

(OpenMP). This hybrid model lends itself well to the increasingly 

common hardware environment of networked SMP machines. 

 Another common example of a hybrid model is combining data 

parallel with message passing. As mentioned in the data parallel 

model section previously, data parallel implementations (F90, 

HPF) on distributed memory architectures actually use message 

passing to transmit data between tasks, transparently to the 

programmer. 



Introduction to High Performance ComputingPage 58

Single Program Multiple Data (SPMD)

 Single Program Multiple Data (SPMD): 

 SPMD is actually a "high level" programming model that can be 

built upon any combination of the previously mentioned parallel 

programming models. 

 A single program is executed by all tasks simultaneously. 

 At any moment in time, tasks can be executing the same or 

different instructions within the same program. 

 SPMD programs usually have the necessary logic programmed 

into them to allow different tasks to branch or conditionally 

execute only those parts of the program they are designed to 

execute. That is, tasks do not necessarily have to execute the 

entire program - perhaps only a portion of it. 

 All tasks may use different data 



Introduction to High Performance ComputingPage 59

Multiple Program Multiple Data (MPMD)

 Multiple Program Multiple Data (MPMD): 

 Like SPMD, MPMD is actually a "high level" 

programming model that can be built upon any 

combination of the previously mentioned parallel 

programming models. 

 MPMD applications typically have multiple executable 

object files (programs). While the application is being 

run in parallel, each task can be executing the same 

or different program as other tasks. 

 All tasks may use different data 


