
Parallel Programming Examples

Examples in CFD Using FORTRAN

Agenda

• Array Processing

• PI Calculation

• Simple Heat Equation

• 1-D Wave Equation

Array Processing
• This example demonstrates calculations on 2-dimensional array

elements, with the computation on each array element being
independent from other array elements.

• The serial program calculates one element at a time in sequential
order.

• Serial code could be of the form:
do j = 1,n

do i = 1,n

a(i,j) = fcn(i,j)

end do

end do

• The calculation of elements is independent of one another - leads to
an embarrassingly parallel situation.

• The problem should be computationally intensive.

Array Processing Solution 1

• Arrays elements are distributed so that each processor owns a portion of an array
(subarray).

• Independent calculation of array elements insures there is no need for communication
between tasks.

• Distribution scheme is chosen by other criteria, e.g. unit stride (stride of 1) through the
subarrays. Unit stride maximizes cache/memory usage.

• Since it is desirable to have unit stride through the subarrays, the choice of a
distribution scheme depends on the programming language. See the Block - Cyclic
Distributions Diagram for the options.

• After the array is distributed, each task executes the portion of the loop corresponding
to the data it owns. For example, with Fortran block distribution:
do j = mystart, myend

do i = 1,n
a(i,j) = fcn(i,j)

end do

end do

• Notice that only the outer loop variables are different from the serial solution.

http://www.llnl.gov/computing/tutorials/parallel_comp/

Array Processing Solution 1
One possible implementation

• Implement as SPMD model.

• Master process initializes array, sends info to
worker processes and receives results.

• Worker process receives info, performs its share
of computation and sends results to master.

• Using the Fortran storage scheme, perform block
distribution of the array.

• Pseudo code solution: red highlights changes for
parallelism.

Array Processing Solution 1
One Possible Implementation

Array Processing Solution 2: Pool of
Tasks

• The previous array solution demonstrated static load
balancing:
– Each task has a fixed amount of work to do
– May be significant idle time for faster or more lightly

loaded processors - slowest tasks determines overall
performance.

• Static load balancing is not usually a major concern if
all tasks are performing the same amount of work on
identical machines.

• If you have a load balance problem (some tasks work
faster than others), you may benefit by using a "pool of
tasks" scheme.

Array Processing Solution 2
Pool of Tasks Scheme

• Two processes are employed

• Master Process:
– Holds pool of tasks for worker processes to do

– Sends worker a task when requested

– Collects results from workers

• Worker Process: repeatedly does the following
– Gets task from master process

– Performs computation

– Sends results to master

• Worker processes do not know before runtime which portion of array they
will handle or how many tasks they will perform.

• Dynamic load balancing occurs at run time: the faster tasks will get more
work to do.

• Pseudo code solution: red highlights changes for parallelism.

Array Processing Solution 2 Pool of Tasks Scheme

Pi Calculation

• The value of PI can be calculated in a number of
ways. Consider the following method of
approximating PI
– Inscribe a circle in a square
– Randomly generate points in the square
– Determine the number of points in the square that

are also in the circle
– Let r be the number of points in the circle divided by

the number of points in the square
– PI ~ 4 r

• Note that the more points generated, the better
the approximation

Discussion

• In the above pool of tasks example, each task
calculated an individual array element as a job.
The computation to communication ratio is finely
granular.

• Finely granular solutions incur more
communication overhead in order to reduce task
idle time.

• A more optimal solution might be to distribute
more work with each job. The "right" amount of
work is problem dependent.

Algorithm
npoints = 10000

circle_count = 0

do j = 1,npoints

generate 2 random numbers between

0 and 1

xcoordinate = random1 ;

ycoordinate = random2

if (xcoordinate, ycoordinate)

inside circle then circle_count =

circle_count + 1

end do

PI = 4.0*circle_count/npoints

 Note that most of the time in running this program
would be spent executing the loop

 Leads to an embarrassingly parallel solution

- Computationally intensive

- Minimal communication

- Minimal I/O

PI Calculation
Parallel Solution

• Parallel strategy: break the loop into
portions that can be executed by the
tasks.

• For the task of approximating PI:
– Each task executes its portion of the

loop a number of times.

– Each task can do its work without
requiring any information from the
other tasks (there are no data
dependencies).

– Uses the SPMD model. One task acts as
master and collects the results.

• Pseudo code solution: red highlights
changes for parallelism.

PI Calculation
Parallel Solution

Simple Heat Equation

• Most problems in parallel computing require communication among the
tasks. A number of common problems require communication with
"neighbor" tasks.

• The heat equation describes the temperature
change over time, given initial temperature
distribution and boundary conditions.

• A finite differencing scheme is employed to
solve the heat equation numerically on a
square region.

• The initial temperature is zero on the
boundaries and high in the middle.

• The boundary temperature is held at zero.
• For the fully explicit problem, a time stepping

algorithm is used. The elements of a 2-dimensional array represent the
temperature at points on the square.

Simple Heat Equation

• The calculation of an element is dependent
upon neighbor element values.

• A serial program would contain code like:

Parallel Solution 1

• Implement as an SPMD model

• The entire array is partitioned and distributed
as subarrays to all tasks. Each task owns a
portion of the total array.

• Determine data dependencies

– interior elements belonging to a task are independent of other tasks

– border elements are dependent upon a neighbor task's data, necessitating
communication.

• Master process sends initial info to workers, checks for convergence and
collects results

• Worker process calculates solution, communicating as necessary with
neighbor processes

• Pseudo code solution: red highlights changes for parallelism.

http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_interior.gif
http://www.llnl.gov/computing/tutorials/parallel_comp/images/heat_edge.gif

Parallel Solution 1

Parallel Solution 2
Overlapping Communication and Computation

• In the previous solution, it was assumed that blocking communications
were used by the worker tasks. Blocking communications wait for the
communication process to complete before continuing to the next
program instruction.

• In the previous solution, neighbor tasks communicated border data, then
each process updated its portion of the array.

• Computing times can often be reduced by using non-blocking
communication. Non-blocking communications allow work to be
performed while communication is in progress.

• Each task could update the interior of its part of the solution array while
the communication of border data is occurring, and update its border
after communication has completed.

• Pseudo code for the second solution: red highlights changes for non-
blocking communications.

Parallel Solution 2
Overlapping Communication and Computation

1-D Wave Equation
• In this example, the amplitude along a uniform,

vibrating string is calculated after a specified
amount of time has elapsed.

• The calculation involves:
– the amplitude on the y axis
– i as the position index along the x axis
– node points imposed along the string
– update of the amplitude at discrete time steps.

1-D Wave Equation
• The equation to be solved is the one-dimensional

wave equation:

where c is a constant

• Note that amplitude will depend on previous
timesteps (t, t-1) and neighboring points (i-1, i+1).
Data dependence will mean that a parallel
solution will involve communications.

1-D Wave Equation
Parallel Solution

• Implement as an SPMD model

• The entire amplitude array is partitioned and distributed as subarrays
to all tasks. Each task owns a portion of the total array.

• Load balancing: all points require equal work, so the points should be
divided equally

• A block decomposition would have the work partitioned into the
number of tasks as chunks, allowing each task to own mostly
contiguous data points.

• Communication need only occur on data borders. The larger the block
size the less the communication.

1-D Wave Equation Parallel Solution

Thank You

www.itlectures.aa.am

1-D Wave Equation Parallel Solution

